Open Access Open Badges Research

Role of metabotropic glutamate receptor 5 signaling and homer in oxygen glucose deprivation-mediated astrocyte apoptosis

Maryse Paquet1, Fabiola M Ribeiro2, Jennifer Guadagno1, Jessica L Esseltine1, Stephen SG Ferguson1* and Sean P Cregan1*

Author Affiliations

1 J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, Department of Physiology and Pharmacology, The University of Western Ontario, 100 Perth Drive, London, ON, N6A 5K8, Canada

2 Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

For all author emails, please log on.

Molecular Brain 2013, 6:9  doi:10.1186/1756-6606-6-9

Published: 14 February 2013



Group I metabotropic glutamate receptors (mGluR) are coupled via Gαq/11 to the activation of phospholipase Cβ, which hydrolyzes membrane phospholipids to form inositol 1,4,5 trisphosphate and diacylglycerol. In addition to functioning as neurotransmitter receptors to modulate synaptic activity, pathological mGluR5 signaling has been implicated in a number of disease processes including Fragile X, amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, epilepsy, and drug addiction. The expression of mGluR5 in astrocytes has been shown to be increased in several acute and chronic neurodegenerative conditions, but little is known about the functional relevance of mGluR5 up-regulation in astrocytes following injury.


In the current study, we investigated primary mouse cortical astrocyte cell death in response to oxygen glucose deprivation (OGD) and found that OGD induced both necrotic and apoptotic cell death of astrocytes. OGD resulted in an increase in astrocytic mGluR5 protein expression, inositol phosphate formation and extracellular regulated kinase (ERK1/2) phosphorylation, but only inositol phosphate formation was blocked with the mGluR5 selective antagonist MPEP. Cortical astrocytes derived from mGluR5 knockout mice exhibited resistance to OGD-stimulated apoptosis, but a lack of mGluR5 expression did not confer protection against necrotic cell death. The antagonism of the inositol 1,4,5 trisphosphate receptor also reduced apoptotic cell death in wild-type astrocytes, but did not provide any additional protection to astrocytes derived from mGluR5 null mice. Moreover, the disruption of Homer protein interactions with mGluR5 also reduced astrocyte apoptosis.


Taken together these observations indicated that mGluR5 up-regulation contributed selectively to the apoptosis of astrocytes via the activation of phospholipase C and the release of calcium from intracellular stores as well as via the association with Homer proteins.

Astrocyte; Metabotropic glutamate receptor; Cell death; Inositol phosphate; Oxygen glucose deprivation; Homer